Typhoid Fever: An Emerging Global Threat


  • Sneha Gupta Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow, India




Salmonella typhi, Lymph node, typhoid virus, typhus virus, citrobacter


Typhoid fever, a formidable infectious disease, is caused primarily by the cunning bacterium known as Salmonella Typhi. This stealthy pathogen often finds its way into our bodies through tainted food and water, setting the stage for a grave public health challenge. Once inside, the Salmonella Typhi bacteria embarks on a dangerous journey, infiltrating our bloodstream and unleashing a host of distressing symptoms, with potentially lifethreatening consequences. In this paper, we delve into the everevolving world of typhoid fever, paying close attention to how urbanization and climate change are transforming the landscape and amplifying its worldwide reach. Understanding the titer value allows for the full and accurate analysis of a Widal test. To acquire the typhoid test report, a good diagnosis requiring titers in the range of 1:20, 1:40, 1:60, 1:80, 1:160, and 1:200 is made.


Download data is not yet available.


Acharya IL, Lowe CU, Thapa R, Gurubacharya VL, Shrestha MB, Cadoz M, et al. Prevention of typhoid fever in Nepal with the VI capsular polysaccharide ofsalmonella typhi. N Engl J Med [Internet]. 1987;317(18):1101–4. Available from: http://dx.doi.org/10.1056/nejm198710293171801

Antillón M, Bilcke J, Paltiel AD, Pitzer VE. Cost-effectiveness analysis of typhoid conjugate vaccines in five endemics low- and middle-income settings. Vaccine [Internet]. 2017;35(27):3506–14. Available from: http://dx.doi.org/10.1016/j.vaccine.2017.05.001

Arjyal A, Basnyat B, Nhan HT, Koirala S, Giri A, Joshi N, et al. Gatifloxacin versus ceftriaxone for uncomplicated enteric fever in Nepal: an open-label, two-centre, randomized controlled trial. Lancet Infect Dis [Internet]. 2016;16(5):535–45. Available from: http://dx.doi.org/10.1016/s1473-3099(15)00530-7.

Azmatullah A, Qamar FN, Thaver D, Zaidi AKM, Bhutta ZA. Systematic review of the global epidemiology, clinical and laboratory profile of enteric fever. J Glob Health [Internet]. 2015;5(2). Available from: http://dx.doi.org/10.7189/jogh.05.020407.

Bhutta ZA. Impact of age and drug resistance on mortality in typhoid fever. Arch Dis Child [Internet]. 1996;75(3):214–7. Available from: http://dx.doi.org/10.1136/adc.75.3.214.

Breiman RF, Cosmas L, Njuguna H, Audi A, Olack B, Ochieng JB, et al. Population-based incidence of typhoid fever in an urban informal settlement and a rural area in Kenya: Implications for typhoid vaccine use in Africa. PLoS One [Internet]. 2012;7(1):e29119. Available from: http://dx.doi.org/10.1371/journal.pone.0029119.

Gilman RH, Hornick RB, Woodward WE, DuPont HL, Snyder MJ, Levine MM, et al. Evaluation of a UDP-glucose-4-epimeraseless mutant of salmonella typhi as a live oral vaccine. J Infect Dis [Internet]. 1977;136(6):717–23. Available from: http://dx.doi.org/10.1093/infdis/136.6.717.

Britto C, Pollard AJ, Voysey M, Blohmke CJ. An appraisal of the clinical features of pediatric Enteric fever: Systematic review and meta-analysis of the age-stratified disease occurrence. Clin Infect Dis [Internet]. 2017;64(11):1604–11. Available from: http://dx.doi.org/10.1093/cid/cix229.

Carias C, Walters MS, Wefula E, Date KA, Swerdlow DL, Vijayaraghavan M, et al. Economic evaluation of typhoid vaccination in a prolonged typhoid outbreak setting: The case of Kasese district in Uganda. Vaccine [Internet]. 2015;33(17):2079–85. Available from: http://dx.doi.org/10.1016/j.vaccine.2015.02.027.

Cook J, Jeuland M, Whittington D, Poulos C, Clemens J, Sur D, et al. The cost-effectiveness of typhoid Vi vaccination programs: Calculations for four urban sites in four Asian countries. Vaccine [Internet]. 2008;26(50):6305–16. Available from: http://dx.doi.org/10.1016/j.vaccine.2008.09.040

Crump JA, Sjölund-Karlsson M, Gordon MA, Parry CM. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive salmonella infections. Clin Microbiol Rev [Internet]. 2015;28(4):901–37. Available from: http://dx.doi.org/10.1128/cmr.00002-15

Darton TC, Jones C, Blohmke CJ, Waddington CS, Zhou L, Peters A, et al. Using a human challenge model of infection to measure vaccine efficacy: A randomised, controlled trial comparing the typhoid vaccines M01ZH09 with placebo and Ty21a. PLoS Negl Trop Dis [Internet]. 2016;10(8):e0004926. Available from: http://dx.doi.org/10.1371/journal.pntd.0004926.

Feasey NA, Gaskell K, Wong V, Msefula C, Selemani G, Kumwenda S, et al. Rapid emergence of multidrug resistant, H58-lineage salmonella typhi in Blantyre, Malawi. PLoS Negl Trop Dis [Internet]. 2015;9(4):e0003748. Available from: http://dx.doi.org/10.1371/journal.pntd.0003748.

Gaind R, Paglietti B, Murgia M, Dawar R, Uzzau S, Cappuccinelli P, et al. Molecular characterization of ciprofloxacin-resistant Salmonella enterica serovar Typhi and Paratyphi A causing enteric fever in India. J Antimicrob Chemother [Internet]. 2006;58(6):1139–44. Available from: http://dx.doi.org/10.1093/jac/dkl391.

Gilman RH, Hornick RB, Woodward WE, DuPont HL, Snyder MJ, Levine MM, et al. Evaluation of a UDP-glucose-4-epimeraseless mutant of salmonella typhi as a live oral vaccine. J Infect Dis [Internet]. 1977;136(6):717–23. Available from: http://dx.doi.org/10.1093/infdis/136.6.717.

PCC 023




How to Cite

Gupta S. Typhoid Fever: An Emerging Global Threat. Int. J. Primary Crit. Care [Internet]. 2023 Sep. 30 [cited 2024 Jul. 25];1(1):1-7. Available from: http://pcc.a2zjournals.com/index.php/pcc/article/view/23




Research Article